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ORTHOTROPIC PLATE WITH INCLUSION HEATED BY A HEAT SOURCE 

Yu. M. Kolyano, I. R. Tatchin, 
and E. G. Ivanik 

UDC 536.24 

The article presents solutions of steadyproblems of heat conduction for an ortho- 
tropic plate with foreign inclusion of arbitrary and small thickness. 

We consider an orthotropic plate with thickness 2~ with an inclusion in the form of a 
strip of width 2h. We represent the thermophysical characteristics of the system under exami- 
nation in the form 

p (x) = p{~) + (p{O) __ pO)) N(x), (1) 

where p(0) and p(1) are the characteristics of the inclusion and of the base material, re- 
spectively, N(x)=S§ S• are asymmetric unique functions [I]. Heat exchange 
with the environment is effected through the surfaces z = • according to Newton's law. For 
determining the temperature we have the equation [2] 

oxO [ %x(x) ~xOT l +-~-p [ 0 r;~'Y(x) OT j {zz(x)6 T=--w.  (2) 

Heatin$ of a Plate by a Linear Heat Source. We assume that an infinite orthotropic plate 
with an inclusion in the form of a strip 2h wide is heated by a linear heat source of intensity 
q, situated at the center of the inclusion. To determine the stationary temperature field, 
we have Eq. (2), where w= q---8(xj6(y) , and the boundary conditions 

26 

l im T = 0. ( 3 )  

Taking (I) into account and using the formula 

(q~q%' = ~'~ + ~ '  -T [~1 [~l 8_+ (x -- x~), (4) 
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we obtain 

O~T 0X z0~--~T - -H [k~ '} -H (k(y ~ -- k{y 1)) N (x)] ~ -]- (1 --  /(x') X 

[OT 6+(x+h) aT & (x --  h ) ] - -  
X OX Ix=--h--O --  a---x--i~+o 

- -  [• + (• - -  -~) N (x)] T = -- Q6 (x) 6 (y), 

(5) 

where [~], [~] are the jumps of the functions ~ and ~, respectively, at the point xl, 
k~}= ~{~}/X{n}u -.~ ' • - ~{~}/6~{~}~ - x (n == 0, 1); K~ -- X~}/~};. . Q -  q126~ ~ ,~ 6~ (~) =: S+_ (~). 

We multiply Eq. (5) by N(x) and introduce the substitution [3, 4] 

0 =- TN (x). 

Then for determining the function 0 we obtain the equation 

0~0 Ox----T-- ~ + k(~ ~ 030 x~O = K~-* s OT 6+ (x + It) 
OyZ Or, I~=-a-o 

OTox ,.=h+o6- (x - -  h)] + Tl~=_~_o6"+(x+h ) -- 

�9 - -  Tl.=h+o 6'_ (x . p h )  - -  Q6 (x) 6 (y). 

Applying the integral Fourier transformation with respect to y to (7), we write 

d ~  
dx 2 - -  - -  ?~O = KT' (T_ - -  T + ) ~ +  (1 - - / ~ 1 )  (TI*= - h - o  6+ (x + h) - -  

-- TI~=h+o 62 (x - -  h)) - -  
Q 

V ~  
8 (x), 

(6) 

(7) 

( 8 )  

where T_ = T (-- x - -  2h) 6+ (x + h), T+ = T  ( - - x  + 2h) 6"_ ( x - -  h),. 72= k(O)n2u " -[-• 
of this equation is as follows: 

Q sh?ox S(x), 
6 = K ; '  (PF - pl +) + (i -- KT") (PT-- P+) -- V~ ?o 

where 

p~ _-- 1 /__d_d [~ (4- 2h --  ~) sh ?o (~ --  x)],t= +h~o ] ST (x ~ h); 
Vo L a~ 

1, x > O ,  
P~=Tp:=• S ( x ) =  0,5, x = O ,  

0, x<0. 

Taking (9) into account, we have the following equation for determining T: 

d2r -- [~7" = KT' (y~ -- ~) (P{ -- P+) + (I -- Kx') (y~ -- ~2) (pT __ p+) __ 
dx" 

Q(Y~--[~9]/2T~ shy~ S(x )+(K?I - -  1)[ d~Fdx, x=_h_o6+ (x + h) 

a~ 6 (x--h)] q 6(x), 
dxl~=h+o - J V ~  

where ~2 ~ k~1)N2 + • 

The solution 

(9) 

(io) 

102 



Applying the Fourier transformation with respect to y to the boundary conditions (3), we 
obtain 

l i m T = 0 .  
i * t ~  ( 1 1 )  

form 
The solution of Eq. (i0) with the boundary conditions (ii) taken into account has the 

--  2 ]/'2"~Q {kl [S_ ( - -  x - -  h) exp [I 5 (x + h)] + S_ (x - -  h) • 

• exp [--[~ (x--h)]] + (lhk~ch%x--sh?olX D Ny(ox)}', 
(12) 

where k 1 = (KTl~ch?oh+ ?osh?oh)-i; k, = KT-r~sh?oh+ ?och?oh. Going over in (12) from the transforms 
to the originals, we obtain 

T = O .f cos fly ka IS_ (--  x - -  h) exp [13 (x + h)] + S_ (x - -  h) • 
2~ o 

• exp [ - -  ~ (x - -  h)]] + (klk2 ch ~oX-- sh ?o txl) ,.N (x) } d~l. 
% 

If the inclusion is thin (h ~ 8), then with the equalities [5, 6] taken into account 

Eq. 

lira Y(x) 
h~o 2h 

(2) assumes the form 

- ~ (x), 6' (x) fl~=o - 1 8' (x) [ /: l .=-o + f l ~ + o  ], 
2 

(13) 

02Tox---7- ~ + kr 02TOy ~ • + 2hS(x)(k~~ r)) 02T0!t,2= 0 

- -  2h6 (x) ((• ~ - -  • T,~=o -- Q*6 (x) 8 (y), 

where (Xo)~- = (z(~ - ~ , Q* = q/26~'(xl)" 
Applying the Fourier transformation with respect to y to Eq. (14), we have 

(14) 

d@ _ ~T : ~ (y) 8 (x), 
dx 2 (15) 

where 

(y) = 

We write the solution of Eq. (15) with (ii) taken into account: 

~ =  O* exp (--  [3 lxD ( a l  a~ ) 
2 -V'2.~ ~ -- ?~ + [5 ---?~ ' (16) 

where 

4h ~ ] a~ = -- a~ = i , ~ , ~  (K~ - 1) ( ~ ~  - i / 2 .  

. - -  1 -4- aT "~ _ ~(ou~(1) 
2 h  (K~ - -  l )  

Going over in (16) from the transforms to the originals, we obtain 
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i (1 1 ) .  T - O*a~ exp(-- ~lxl) cos ~g ~ Vl ~---~ 
2n b --  * 

Hea t ing  a p l a t e  b~. a S~stem of  Heat Sources .  Let  an i n f i n i t e o r t h o t r o p i c  p l a t e  w i th  an 
i n c l u s i o n  in  the  form of a s t r i p  of w id th  2h be f ieated by a sys tem of  e q u a l l y  spaced concen-  
t r a t e d  hea t  s ou rce s  w i t h  d e n s i t y  

~v=.q28 6(X)2c ( 1 + 2  2 cos ~'mY), ~,~=--mZc ' (17) 
t n = l  

where 2c is the distance between neighboring heat sources. To determine the stationary 
temperature field we have Eq, (2)and the boundary conditions (3). Using (4), we write "Eq. 
(2) as follows: 

O~T ~ 0 ,  lk~O~ k(n~N(x~] O~T + ( l _ K 7 ' ) [  OT 6 + ( x + h ) - -  
Ox---" T- + [kv -t" ~ v -- y ~ ~ Oy---'T- _ 0xt~=_a_ ~ 

OT 8:. (x - -  h)] -- [x~ + (x~ --  • N (x)] r == 
Oxv,=h+o (18) 

2c r n =  1 

M u l t i p l y i n g  (18) by N(x) and i n t r o d u c i n g  the  s u b s t i t u t i o n  (6) ,  we a r r i v e  a t  t he  e q u a t i o n  

0~0 

OT 

OXix=h+o 

l O T  --+ k~, ~176 ~ ,,2oO -- ~' ,Ox, l,x=L,,_o6+(~ + h) - 

6_ (x - -  h) ] + Tl.~=_h_ o 6+ (x + h) - -  Tl.=h+0 8 '  (x - -  h) - -  

- &  2 cos 
2c m ~ l  

(19) 

When we apply the Fourier transformation with respect to y to (19) and solve the obtained 
equation, we have 

q s h ? 0 x , , / ~ { 6 ( n  ) + 
g=K2~(PT--P~+)+(I - K-f') (P-f--P+)-- T -~, g f 

+ 2 [ 6 ( ~  + ~ )  + 8 ( ~ - ~ ) l } s ( x ) .  
m = l  

(20) 

Using (20), we determine the function T from the equation 

d~ 
dx~ F ~  - ~ '  (,fo - -  f~) ( P F - -  P+,) + (~ - -  K-;') (~,~ - -  f~) (PF -- P~+) + 

+(K2--D d~ 6+(x+h) ~ 6_(~-h) -7- ~- 6(n)+ 
aXjx=--h--o aXlx=h+o 

+ ~ i6 (n + ~m) + 6 ( n -  ~.,)1} (~g - ~) sh ~0___5C S (~) + 6 (x) . 
r n = l  ~0  

(21) 

The solution of Eq. (21), with (ii) taken into account, have the form 

2 -T-- ---Q,/'s {6(n) + 2 c V  2 m=iIa(n+ ~m)+ 6(n -- ~,.)I} x 

X tkl IS_ (-- x --  h) exp [6 (x -b h)] if- S_ (x -- h) exp [-- ~ (x --- h)]] + 

+ A T ( X ) ( k l k 2 C h ~ o ~  - s h ~ 0 , x , ) l  . 
~'0 J 

(22) 
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Going over in (22)from the transforms to the originals, we obtain 

N (x) 
T ..... ~tc ( ~  (So, • q- [q) (:% • ch • x - -  sh • lxl] + 

~4 o 

q- 2 cos r (V~), V~ )) + 
m=! C 

~- ~ [~o (%o), 3,~)) ch'f(~ - -  sh v~)lxl] , 

(23) 

where 

q~ (a, b) = a -1- b K ; ~ q  - exp (--  2ah) (a - -  bIf2~ ~) . 

a + - b K x  ~ - -  exp (-- 2 a h ) ( a  -- b K 2  ~) 

(a, b) = .S_ (--  x - -  h) exp [b (x -I- h)] -k S_ (x - -  h) exp [--  b (x - -  h)] 
IC;  ~ b c h  ah  --}- a s h a h  

v2 ~= / ~"~ m ~  ~ , - - j - - T  x~ ( n = 0 ,  1). 

In the case of a thin inclusion we have the equation of heat conduction 

t 

d~T. 
dx'~ - - -  [3~T = 6 ( ~ c ) ( - -  - - - ~ - V ~ -  m=~ 

+ 2@,~=0[(k~~ k~ '~) ~ + (~;)~-@ \ 

whose solution with conditions (ii) is 

- -  n o  

2c [/  ' • q- h ((• _ • 6 01) ~- ~'~ exp (--I-q ky z a n y 1  x 
m ~  1 

x ;s • ~,,,) + 6 (n - x,,,) ,i 
-I/ ~'~,,~ 8, + ~ + h i(~;) ~ - ~ + ~ (k~~ k~':)] /" 

(24) 

(25) 

Going over in (25) from the transforms to the originals, we obtain 

T =  Q* { exp (--  • txf) ~ cos s • 
4C . ~1 @- h ((N;) ~ - -  X~) @ 2 m=t 

(261 
�9 exp(--Ixl]/k"~ 2y m~ J- • I. 

x V k '1~ ~m + ~ + h [(~;)~ - ~ + s ( k ? ' ~  - k~)l  

We u s e d  a compute r  ES-1022 to  c a r r y  ou t  c a l c u l a t i o n s  by f o r m u l a s  (23)  and (26) f o r  a p l a t e  
of glass textolite KAST-V and an inclusion of steel brand IKhlSN9T. The results of the investi- 

gations of the dimensionless temperature ~ = T in a plate heated by a system of con- 
q 

centrated heat sources are presented in Figs. 1 and 2. The solid curves in Fig. la, b corre- 
spond to the temperature in a plate with a striplike inclusion, the dashed lines relate to a 

narrow inclusion. The values of the parameters are as follows: Bi0 = %(~ x = I; Bi~ = ~(b6~ /~Cl)x =: 0; 
0,01; 0,1; c/6 == 100; h / 8 = H = O , 1 .  

It follows from Fig. la that at the points y=!(2k+l)lOO6=+_(2k+l) c, k = O, i, 2, 
�9 .., the temperature attains its minimum. In Fig. Ib the curves of the change of temperature 
along the axis of abscissas are sho~r We note that in the inclusion the temperature changes 
imperceptibly compared with the base material of the plate for a system with striplike inclu- 
sion. With increasing heat transfer from the surface of the base material the temperature 
drops. 
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Fig. i. Change of the dimensionless temperature ~ along 
the axis of the inclusion (a) and along the axis of 
abscissas (b). 
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Fig. 2. Change of the rela- 
tive error e in dependence 
on the parameter H at the 
points x = 0; h; y = • k~, 
k = 0, i, 2 ..... 

In Fig. 2 we see the dependences of the relative error e = (Tnr -- Tstr)/Tstr'lO0% on the 
parameter H. The solid�9 correspond to the error at the point x = 0, y = 0, the dashed 
lines to the point x = h, y = 0. Numerical investigations show that an increase of the 
parameter H and of heat transfer from the surface of the base material lead to an increase of 
the error of temperature determined according to the model of a thin inclusion. 

NOTATION 

T, temperature; x, y, Cartesian coordinates; ~, half-thickness of the plate; h, half- 
width of the inclusion; e, half the distance between the heat sources; w, power of the heat 
sources; X x, ky, thermal conductivity in the directions of the Ox and Oy axes; ~z, heat-trans- 
fer coefficient from the surface z = • B, Biot number; ~(~), Dirac delta function; S• 
asymmetric unit functions; S(~), symmetric unit function. 
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CALCULATION OF TOMOGRAPHIC PROJECTIONS 

V. I. Vlasov and V. P. Kurozaev UDC 517.39 

The article suggests a method of calculating tomographic projections. 

The problem of interaction between x rays and the substance of the investigated object, 
arising in the field of computerized tomography, reduces to the calculation of tomographic 
projections [i]. The present article submits a method of calculating parallel and bundle tomo- 
graphic projections for one class of images of the section of the object; the terminology 
and some of the designations are taken over from [i], 

Let w and ~ be the applicates of points of the plane of the object's section in the 
initial system x, y and in thesystem of coordinates x, y rotated through the angle 6, re- 
spectively, w ~ we -~ ; let ~(x, y) and~0(x, ~) be the distribution of the absorption coeffici- 
ent by the material of the object in the initial and in the rotated system of coordinates, 
respectively, ~0(x, ~ = ~(x, y) ; the function ~(x, y) is called the image of the section of 

.... A 
the object. Then for x rays passing along the straight line x = const, the logarithm of the 
ratio of its intensity at the entrance intothe object to the intensity at the exit from 
the object, called the parallel tomographic projection ps(x) of the section, is determined 
by the formula 

........ 

oexP i 6 - -  -~- 
Assume that from the source lying at the point , there emerges a beam in the [(o )] d i r e c t i o n  p a r a l l e l  to  t h e  v e c t o r  exp i ~ - - t - ~  + ?  ; t he  l o g a r i t h m  of  t h e  r a t i o  o f  i t s  i n -  

t e n s i t i e s  a t  t h e  e n t r a n c e  i n t o  and a t  t h e  e x i t  f rom t h e  o b j e c t  i s  c a l l e d  t h e  b u n d l e  p r o j e c t i o n  
h~(y)  o f  t h e  s e c t i o n ;  i t  i s  c o r r e l a t e d . w i t h  t h e  p a r a l l e l  p r o j e c t i o n  by t h e  r e l a t i o n  [1] 

. hl3(Y) :- Potl3,v) (x(~, ?)), (2) 

where  t h e  dependences  x ([3, V), 0([5, ~,,) have the  form 

x = - - p s i n  7, 0 = [ ~ + ? .  (3) 

We introduce the notation: l, n are integers, n = I, 2, ..., N; I = i, 2, ..., Ln; g(n, f) 
is the region bounded by an ellipse with the center at the point R(n, l)exp[i~(n, /)], the semi- 
axis a(n, l), b(n, l), the first of which is inclined to the radius vector of the center of the 
ellipse at the angle ~(n, /):; if for some n o , l 0 we have R (no, 10) = 0, then we put 
~(no, 10) = 0; g(0) is the region bounded by an ellipse with the center at the origin of coordinates, 
semiaxes a(0), b(0), the first of which is inclined to the x axis at the angle #(0). 

Let us examine the class of images ~(x, y) for which the following condition is fulfilled; 
the section of the object is the domain g(0); g(& 0~g(0) for all n, l; the sets G(n), deter- 
mined by the relation 

L~ 

G ( n ) =  U g ( n ,  l), (4) 
l : l  

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. i, pp. 126-128, January, 
1986. Original article submitted July 19, 1983. 
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